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Lipid membranes with free edges
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Lipid membrane with freely exposed edge is regarded as smooth surface with curved boundary. Exterior
differential forms are introduced to describe the surface and the boundary curve. The total free energy is
defined as the sum of Helfrich’s free energy and the surface and line tension energy. The equilibrium equation
and boundary conditions of the membrane are derived by taking the variation of the total free energy. These
equations can also be applied to the membrane with several freely exposed edges. Analytical and numerical
solutions to these equations are obtained under the axisymmetric condition. The numerical results can be used
to explain recent experimental results obtained by Saitohet al. @Proc. Natl. Acad. Sci.95, 1026~1998!#.
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I. INTRODUCTION

Theoretical study on shapes of closed lipid membra
made great progress two decades ago. The shape equat
closed membranes was obtained in 1987@1#, with which the
biconcave discoidal shape of the red cell was naturally
plained @2#, and a ratio ofA2 of the two radii of a torus
vesicle membrane was predicted@3# and confirmed by ex-
periment@4#.

During the formation process of the cell, either mater
will be added to the edge or the edge will heal itself so as
form closed structure. There are also metastable cup
equilibrium shapes of lipid membranes with free edges@5#.
Recently, opening-up process of liposomal membranes
talin @6,7# has also been observed which noises the intere
studying the equilibrium equation and boundary conditio
of lipid membranes with free exposed edges. Capovillaet al.
first studied this problem and gave the equilibrium equat
and boundary conditions@8#. They also discussed the me
chanical meaning of these equations@8,9#.

The study of these cuplike structures enables us to un
stand the assembly process of vesicles. Ju¨licher and Lip-
owsky suggest that a line tension can be associated w
domain boundary between two different phases of an in
mogeneous vesicle and leads to the budding@10#. For sim-
plicity, however, we will restrict our discussion on open h
mogenous vesicles.

In this paper, a lipid membrane with freely exposed ed
is regarded as a differentiable surface with a boundary cu
Exterior differential forms are introduced to describe the s
face and the curve. The total free energy is defined as
sum of Helfrich’s free energy and the surface and line t
sion energy. The equilibrium equation and the boundary c
ditions of the membrane are derived from the variation of
total free energy. These equations can also be applied to
membrane with several freely exposed edges. This is ano
way to obtain the results of Capovillaet al. Some solutions
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to the equations are obtained and the corresponding sh
are shown. They can be used to explain some known exp
mental results@6#.

This paper is organized as follows: In Sec. II, we retr
spect briefly the surface theory expressed by exterior dif
ential forms. In Sec. III, we introduce some basic propert
of Hodge star* . In Sec. IV, we construct the variationa
theory of the surface and give some useful formulas. In S
V, we derive the equilibrium equation and boundary con
tions of the membrane from the variation of the total fr
energy. In Sec. VI, we suggest some special solutions to
equations and show their corresponding shapes. In Sec.
we put forward a numerical scheme to give some axisy
metric solutions as well as their corresponding shapes to
plain some experimental results. In Sec. VIII, we give a br
conclusion and prospect the challenging work.

II. SURFACE THEORY EXPRESSED BY EXTERIOR
DIFFERENTIAL FORMS

In this section, we retrospect briefly the surface theo
expressed by exterior differential forms. The details can
found in Ref.@11#.

We regard a membrane with freely exposed edge a
differentiable and orientational surface with a bounda
curveC, as shown in Fig. 1. At every point on the surfac
we can choose an orthogonal framee1 ,e2 ,e3 with ei•ej
5d i j ande3 being the normal vector. For a point in curveC,
e1 is the tangent vector ofC.

An infinitesimal tangent vector of the surface is defined

dr5v1e11v2e2 , ~1!

where d is an exterior differential operator andv1 ,v2 are
one-differential forms. Moreover, we define

dei5v i j ej , ~2!

wherev i j satisfiesv i j 52v j i because ofei•ej5d i j .
With dd50 and d(v1`v2)5dv1`v22v1`dv2, we

have
©2003 The American Physical Society15-1
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dv15v12̀ v2 ; dv25v21̀ v1 ; v1`v131v2`v2350;
~3!

and

dv i j 5v ik`vk j ~ i , j 51,2,3!, ~4!

where the symbol ‘‘̀ ’’ represents the exterior product o
which the most excellent expatiation may be the Ref.@12#.

Equation~3! and Cartan lemma imply that

v135av11bv2 , v235bv11cv2 . ~5!

Therefore, we have

area element: dA5v1`v2 , ~6!

first fundamental form:I 5dr•dr5v1
21v2

2 , ~7!

second fundamental form:

II 52dr•de35av1
212bv1v21cv2

2 , ~8!

mean curvature:H5
a1c

2
, ~9!

Gaussian curvature:K5ac2b2. ~10!

III. HODGE STAR *

In this part, we briefly introduce basic properties rath
than the exact definition of Hodge star* @13# because we jus
use these properties in the following contents.

If g,h are functions defined on 2D smooth surfaceM, then
the following formulas are valid:

* f 5 f v1`v2 ; ~11!

* d f52 f 2v11 f 1v2 if d f5 f 1v11 f 2v2 ; ~12!

d* d f5¹2f , ¹2 is the Laplace-Beltrami operator.
~13!

We can easily prove that

FIG. 1. The surface with an edgeC. At every point of the sur-
face, we can construct an orthogonal framee1 ,e2 ,e3, wheree3 is
the normal vector of the surface. For a point on curveC, e1 is the
tangent vector ofC.
06191
r

E E
M

~ f d* dg2gd* d f !5 R
]M

~ f * dg2g* d f ! ~14!

through Stokes’s theorem and integration by parts.

IV. VARIATIONAL THEORY OF THE SURFACE

The variation of the surface is defined as

dr5V2e21V3e3 , ~15!

where the variation alonge1 is unnecessary because it giv
only an identity. Furthermore, let

dei5V i j ej , V i j 52V j i . ~16!

Operatorsd and d are independent, thusdd5dd. ddr
5ddr implies that

dv15V2v211V3v312v2V21, ~17!

dv25dV21V3v322v1V12, ~18!

dV35V13v11V23v22V2v23. ~19!

Furthermore,ddei5ddei implies that

dv i j 5dV i j 1V ikvk j2v ikVk j . ~20!

It is necessary to point out that the properties of the
eratord are exactly similar to those of the ordinary differe
tial.

V. EQUILIBRIUM EQUATION OF THE MEMBRANE
AND BOUNDARY CONDITIONS

The total free energyF of a membrane with an edge i
defined as the sum of Helfrich’s free energy@14,15# FH

5**@kc/2(2H1c0)21 k̄K#dA and the surface and line ten
sion energyFsl5l**dA1grCds. Herekc , k̄, c0 , l, andg
are constants. With the arc-length parameterds5v1, the
geodesic curvaturekg5v12/ds on C and the Gauss-Bonne
formula**KdA52p2rCkgds, the total free energy and it
variation are given as

F5E E Fkc

2
~2H1c0!21lGv1`v21g R

C
v12 k̄ R

C
v12

12p k̄, ~21!

and

dF5kcE E ~2H1c0!d~2H !v1`v21E E Fkc

2
~2H

1c0!21lGd~v1`v2!1g R
C
dv12 k̄ R

C
dv12,

~22!

respectively. From Eqs.~17! and ~18!, we can easily obtain
5-2
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d~v1`v2!5dv1`v21v1`dv2

52d~V2v1!2~2H !V3v1`v2 . ~23!

Equations~5!, ~17!, ~18!, and~20! lead to

d~2H !v1`v25d~a1c!v1`v2

52~2H22K !V3v1`v21d~V13v2

2V23v1!1aV2dv12bdV2`v2

1bV2dv21cdV2`v1 . ~24!

Thus we have

dF5kcE E ~2H1c0!@2~2H22K !V3v1`v21d~V13v2

2V23v1!1aV2dv12bdV2`v21bV2dv21cdV2

`v1#1E E S kc

2
~2H1c0!21l D @2d~V2v1!

2~2H !V3v1`v2#1g R
C
@V2v211V3v312v2V21#

2 k̄ R
C
@dV121V13v322v13V32#. ~25!

If V250, thendV35V13v11V23v2 , * dV352V23v1
1V13v2. On curveC, v250, v3152av1 , v3252bv1 ,
V3uC5V3C . Thus Eq.~25! is reduced to

dF5E E @kc~2H1c0!~2H22c0H22K !22lH#V3v1

`v21kcE E ~2H1c0!d* dV32g R
C
av1V3

1 k̄ R
C
~bV132aV23!v1 . ~26!

In terms of Eqs.~13! and ~14!, we have

E E ~2H1c0!d* dV35 R
C
~2H1c0!* dV3

2 R
C
V3* d~2H1c0!

1E E V3¹2~2H1c0!v1`v2 .

Using integration by parts and Stokes’s theorem, we arriv
rCbV13v15rCbdV3C52rCV3Cdb. Thus
06191
at

dF5E E @kc~2H1c0!~2H22c0H22K !22lH

1kc¹
2~2H1c0!#V3v1`v22 R

C
@kc~2H1c0!

1 k̄a#V23v12 R
C
V3C@kc* d~2H1c0!1gav1

1 k̄db#. ~27!

It follows that

kc~2H1c0!~2H22c0H22K !22lH1kc¹
2~2H !50,

~28!

@kc~2H1c0!1 k̄a#uC50, ~29!

@kc* d~2H !1gav11 k̄db#uC50. ~30!

The mechanical meanings of the above three equat
are: Eq.~28! is the equilibrium equation of the membran
Eq. ~29! is the moment equilibrium equation of points onC
around the axise1; and Eq. ~30! is the force equilibrium
equation of points onC along the direction ofe3 @8,9#. It is
not surprising that Eq.~29! contains the factork̄ because it is
related to the bend energy in Helfrich’s free energy. Ho
ever, it is difficult to understand whyk̄ is also included in Eq.
~30!. In fact, the termk̄db in Eq. ~30! represents the shea
stress which also contributes to the bend energy in Helfric
free energy.

In fact, a5kn andb5tg are the normal curvature and th
geodesic torsion of curveC, respectively, and *d(2H)
52e2•¹(2H)v1. Thus Eqs.~29! and ~30! become

@kc~2H1c0!1 k̄kn#uC50, ~31!

F2kce2•¹~2H !1gkn1 k̄
dtg

ds GU
C

50, ~32!

respectively.
If V350, then dV35V13v11V23v22V2v235(V13

2bV2)v11(V232cV2)v250. It leads toV135bV2 and
V235cV2.

dF5kcE E ~2H1c0!@aV2dv12bdV2`v21bV2dv2

1cdV2`v11d~V13v22V23v1!#

1E E Fkc

2
~2H1c0!21lG@2d~V2v1!#

1g R
C
V2v212 k̄ R

C
KV2v1 . ~33!

Otherwise,v135av11bv2 implies thatadv11db`v2
12bdv22cdv152da`v1. Thus
5-3
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aV2dv12bdV2`v21bV2dv21cdV2`v1

1d~V13v22V23v1!

52d~a1c!`V2v1

52d~2H1c0!`V2v1 ~c0 is a constant!. ~34!

Therefore

dF5 R
C
F2

kc

2
~2H1c0!2V2v12 k̄KV2v12lV2v1

1gV2v21G . ~35!

It follows that

Fkc

2
~2H1c0!21 k̄K1l1gkgGU

C

50, ~36!

because ofv2152kgv1 on C. This equation is the force
equilibrium equation of points onC along the direction ofe2
@8,9#.

Equations~28!, ~31!, ~32!, and ~36! are the equilibrium
equation and boundary conditions of the membrane. T
correspond to Eqs.~17!, ~60!, ~59!, and ~58! in Ref. @8#,
respectively. In fact, these equations can be applied to
membrane with several edges also, because in above di
sion the edge is a general edge. But it is necessary to no
the right direction of the edges. We call these equations
basic equations.

VI. SPECIAL SOLUTIONS TO BASIC EQUATIONS
AND THEIR CORRESPONDING SHAPES

In this section, we will give some special solutions to t
basic equations together with their corresponding shapes
convenience, we consider the axial symmetric surface w
axial symmetric edges. Zhou has considered the sim
problem in his Ph.D. thesis@16#. If we express the surface i
3-dimensional space asr5$v cosu,v sinu,z(v)% we obtain

2H52S sinc

v
1cosc

dc

dv D , K5
sinc cosc

v
dc

dv
,

¹~2H !52
r2

sec2c

d

dv S sinc

v
1cosc

dc

dv D ,

and

¹2~2H !52
cosc

v
d

dv Fv cosc
d

dv S sinc

v
1cosc

dc

dv D G ,
wherec5arctan@dz(v)/dv#, r25]r /]v. Definet as the direc-
tion of curveC and r15]r /]u. Obviously, t is parallel or
antiparallel tor1 on curveC. Introduce a notationsn, such
that sn511 if t is parallel tor1, andsn521 if not. Thus
e25snr2 /secc and e2•¹(2H)52sncosc(]/]v)@(sinc/v)
06191
y

e
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e
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ar

1coscdc/dv# on curveC. For curveC, kn52sinc/v, tg
50, andkg52sncosc/v. Thus we can reduce Eqs.~28!,
~31!, ~32!, and~36! to

kcS sinc

v
1cosc

dc

dv
2c0D F1

2 S sinc

v
1cosc

dc

dv D 2

1
1

2
c0S sinc

v
1cosc

dc

dv D2
2 sinccosc

v
dc

dv G
2lS sinc

v
1cosc

dc

dv D1kc

cosc

v
d

dv Fvcosc
d

dv S sinc

v

1cosc
dc

dv D G50, ~37!

FkcS sinc

v
1cosc

dc

dv
2c0D1 k̄

sinc

v G
C

50, ~38!

F2snk̄cosc
d

dv S sinc

v D1g
sinc

v G
C

50, ~39!

F k̄2

2kc
S sinc

v D 2

1 k̄
sinccosc

v
dc

dv
1l2sng

cosc

v G
C

50.

~40!

In fact, in the above four equations only three are ind
pendent. We usually keep Eqs.~37!, ~38!, and ~40! for the
axial symmetric surface. For the general case, we conjec
that there are also three independent equations among
~28!, ~31!, ~32! and ~36!. Equation~37! is the same as the
equilibrium equation of axisymmetrical closed membran
@17,18#. In Ref. @18#, a large number of numerical solution
to Eq. ~37! as well as their classifications are discussed.

Next, let us consider some analytical solutions and th
corresponding shapes. We merely try to show that th
shapes exist, but not to compare with experiments. Th
fore, we only consider analytical solutions for some spec
values of parameters.

A. The constant mean curvature surface

The constant mean curvature surfaces satisfy Eq.~28! for
proper values ofkc , c0 , K, andl. But Eqs.~31!, ~32!, and
~36! imply 2H1c050, kn50, andk̄K1gkg50 on curveC
if kc , k̄, andg are nonzero.

For axial symmetric surfaces,kn50 requires sinc50.
ThereforeK50 which requireskg50. Only straight line can
satisfy these conditions. It contradicts the fact thatC is a
closed curve. Therefore, there is no axial symmetric op
membrane with constant mean curvature.

B. The central part of a torus

When l50, c050, the condition sinc5av1A2
satisfies Eq.~37!. It corresponds to a torus@15#. Equations
~38! and ~40! determine the position of the edgeve

52A2(kc1 k̄)/a(2kc1 k̄), where a52g(kc

1 k̄)A2(2kc
214kck̄1 k̄2)/(2kc1 k̄)kck̄. If we let kc5 k̄ and

kc /g52A14/3 ~the unit is the length dimension!, it leads to
1/a521 andve52A2/3 ~the unit is the length dimension!.
5-4
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Thus the shape is the central part of a torus as shown in
2. This shape is topologically equivalent to a ring as sho
in Fig. 3.

C. A cup

If we let sinc5C, according to Hu’s method@19# Eq.
~37! reduces to

~C221!
d3C

dv3
1C

d2C

dv2

dC

dv
2

1

2 S dC

dv D 3

1
2~C221!

v
d2C

dv2

1
3C

2v S dC

dv D 2

1S c0
2

2
1

2c0C

v
1

l

kc
2

3C222

2v2 D dC

dv

1S c0
2

2
1

l

kc
2

1

v2D C

v
1

C3

2v3
50. ~41!

Now, we will consider the case thatC50 for v50. As v
→0, Eq. ~41! approaches to (d3C/dv3)1(1/v)(d2C/dv2)
2(1/v2)(dC/dv)1(C/v2)50. Its solution is C5a1 /v
1a2v1a3v ln v where a150, a2 and a3 are three con-
stants. Ifl50 andc0.0, we find thatC5sinc5b(v/v0)
1c0vln(v/v0) satisfies Eq.~37!. The shapes of closed mem
branes corresponding to this solution are fully discussed
Liu et al. @20#. Equations~38! and ~40! determine the posi-
tion of the edge that satisfies tanc(v)52g/2kcc0 if k̄

FIG. 2. The central part of a torus.

FIG. 3. A ring ~left! and a disk~right!.
06191
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522kc . If we let b51, v051/c051 ~the unit is the length
dimension!, andg@kcc0, we obtainv/v0'1 and its corre-
sponding shape likes a cup as shown in Fig. 4. This shap
topologically equivalent to a disk as shown in Fig. 3.

VII. AXISYMMETRICAL NUMERICAL SOLUTIONS

It is extremely difficult to find analytical solutions to Eq
~37!. We attempt to find the numerical solutions in this se
tion. But there is a difficulty that sinc(v) is multivalued. To
overcome this obstacle, we use the arc length as the pa
eter and express the surface asr5$v(s)cosu,v(s)sinu,z(s)%.
The geometrical constraint and Eqs.~28!, ~31!, and~36! now
become

v8~s!5cosc~s!, z8~s!5sinc~s!, ~42!

~223 sin2c!c8v2sinc~11cos2c!1@~c0
212l/kc!c8

2~c8!322c-#v31@~c0
212l/kc!sinc24c0sincc8

13sinc~c8!224coscc9#v250, ~43!

FkcS c02
sinc

v
2c8D2 k̄

sinc

v G
C

50, ~44!

F k̄c0

sinc

v
2 k̄S 11

k̄

2kc
D sin2c

v2
1l2sng

cosc

v G
C

50.

~45!

We can numerically solve Eqs.~42! and ~43! with initial
conditions v(0)50, z(0)50, c(0)50, c8(0)5a, and
c9(0)50 and then find the edge position through Eqs.~44!
and ~45!. The shape corresponding to the solution is top
logically equivalent to a disk as shown in Fig. 3. In fact, E
~43! can be reduced to a second order differential equa
@8,9,21#, but we still use the third order differential equatio
~43! in our numerical scheme.

In Fig. 5, we depict the outline of the cup-like membra
with a wide orifice. The solid line corresponds to the nume
cal result with parametersa5c050.8 mm21, l/kc

FIG. 4. A cup.
5-5
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50.08mm22, g/kc50.20mm21, and k̄/kc50.38. The
squares come from Fig. 1~d! of Ref. @6#.

In Fig. 6, we depict the outline of the cuplike membra
with a narrow orifice. The solid line corresponds to the n
merical result with parametersa5c050.86mm21, l/kc

50.26mm22, g/kc50.36mm21, and k̄/kc520.033. The
squares come from Fig. 3~k! of Ref. @6#. Obviously, the nu-
merical results agree quite well with the experimental res
of Ref. @6#.

VIII. CONCLUSION

In the above discussion, we introduce exterior differen
forms to describe a lipid membrane with freely expos
edge. The total free energy is defined as the Helfrich’s f
energy plus the surface and line tension energy. The equ
rium equation and boundary conditions of the membrane
derived from the variation of the total free energy. The
equations can also be applied to the membrane with sev

FIG. 5. The outline of the cuplike membrane with a wide orific
The solid line is the numerical result with parametersa5c0

50.8 mm21, l/kc50.08mm22, g/kc50.20mm21, and k̄/kc

50.38. The squares come from Fig. 1~d! of Ref. @6#. z axis is the
revolving axis andv is the revolving radius.
,

tl.

n
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freely exposed edges. A numerical scheme to give some
symmetric solutions and their corresponding shapes do a
with some experimental results.

The method that combines exterior differential forms w
the variation of surface is of important mathematical sign
cance. It is easy to be generalized to deal with and to s
plify the difficult variational problems on high-dimension
manifolds.

Although we have given some axisymmetric numeric
solutions that agree with experimental results obtained
Saitohet al., up to now, we still cannot find any unsymmetr
cal solution. A large number of unsymmetrical shapes
found in experiments, which will be a challenge to the th
oretical study.

ACKNOWLEDGMENTS

We are grateful for the instructive advice of J. J. Zhou,
J. Zhou, R. Capovilla, and J. Guven. We thank Professo
Z. Xie and Dr. L. Q. Ge for their critical reading of ou
manuscript.

. FIG. 6. The outline of the cuplike membrane with a narro
orifice. The solid line is the numerical result with parametersa
5c050.86mm21, l/kc50.26mm22, g/kc50.36mm21, and

k̄/kc520.033. The squares come from Fig. 3~k! of Ref. @6#. z axis
is the revolving axis andv is the revolving radius.
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